Ν F Ρ Δ

Final Presentation Kennesaw State University

NFPA Education and Technology Foundation

Students: Michael Bakareke (PM)

Kendarius Chatman Nyiem Dailey Hunter Whitworth

KENNESAW STATE U N I V E R S I T Y

Advisors: Drs. Laura & Richard Ruhala April 14, 2022

Introduction

- Kennesaw State is located in Georgia, specifically in the metro Atlanta area.
- We are the 10th largest undergraduate mechanical engineering program in the United State of America.
- This is Kennesaw State's third appearance in the Fluid Power Vehicle Challenge (2019, 2021, 2023).

Team Introduction

Hunter Whitworth Michael Bakareke Kendarius Chatman Nyiem Dailey

Design Objectives

- Vehicle must adhere to the constraints of the FPVC
- Vehicle can compete in all 4 events

 Sprint, Endurance, Regenerative, and Efficiency challenges
- Design a vehicle that is unique to Kennesaw State
 - Vehicle design is substantially different in comparison to previous KSU FPVC teams

Team Advisors & Mentors

Laura Ruhala Ph.D. Associate Professor Kennesaw State University

& Instructor for Senior Design I

FPVC Mentor #1 Matthew Kruse, Systems Engineer, Danfoss Power Solutions

Nov 2022 – March 2023

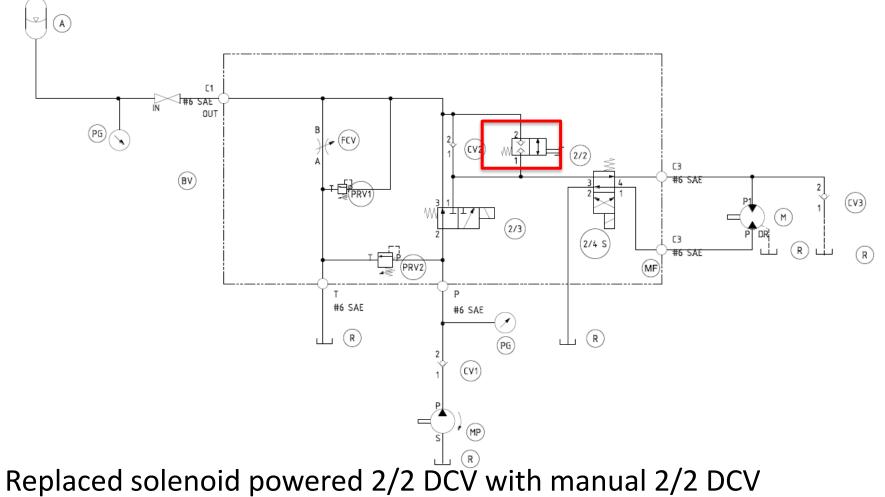
Richard Ruhala Ph.D. Professor Kennesaw State University

& Instructor for Senior Design II

FPVC Mentor #2 **Richard Lyman,** Chief Engineer, Danfoss Power Solutions

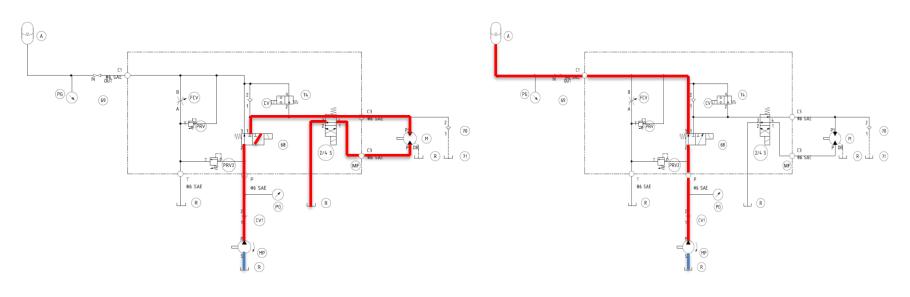
April 2023

Summary of Midway Review



- Hardware selection
 - Hydraulics
 - Pump: 0.659 CID CW rotational gear pump
 - Motor: 0.659 CID Bi-rotational gear motor
 - Accumulator: 1 gallon bladder
 - Pneumatics
 - 9/16 Single acting, spring return cylinder
 - #10-32 Port 1/4" Tube Flow Control Valve
- Bicycle Frame

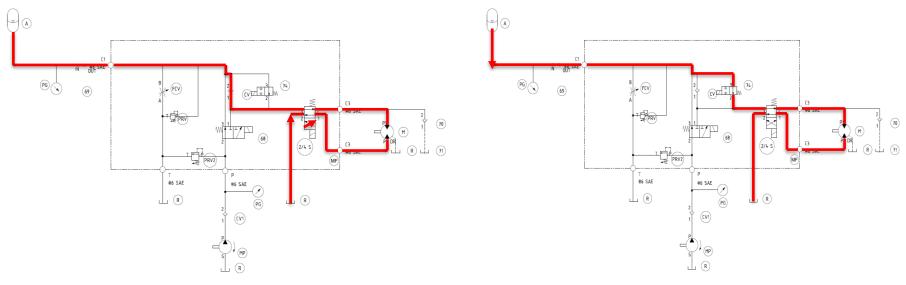
Midway Review Changes



to create fail safe options in Accumulator charging mode

۲

Hydraulic Schematics – Modes 1 & 2


Direct Drive

Direct Charge

Hydraulic Schematics – cont. – Modes 3 & 4

Regenerative Braking

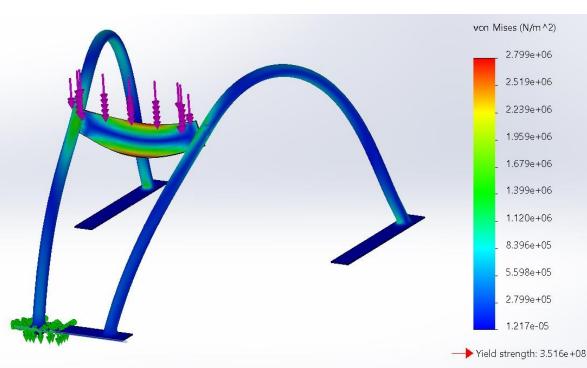
Accumulator Charging

Bike Selection

- Purchased Eco-Tad SX Recumbent Trike
- Trike allowed us to center our hydraulic system in the rear and low center of gravity.
 - Ground clearance allowed for us to safely store the reservoir.
 - Significant modifications made by KSU Team.

Vehicle Construction & Modifications

- Implementation of 1 ¹/₄ metal tubing.
- Rods mount
 - Accumulator
 - Toggle switch
 - <image>

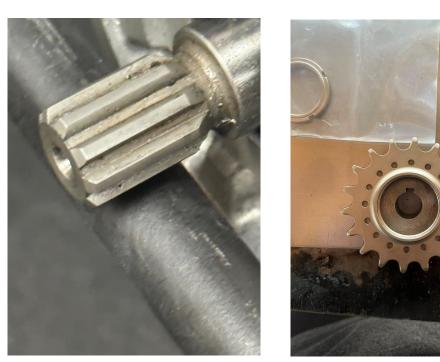

- Regulator
- Ball Valve

Frame Modification and Strength Analysis

- Emphasis on stress and displacement of rear hydraulic components on new frame.
 - Simulation conducted on 1-1/4 tubing.

- Load of Hydraulic Equipment on upper frame Evaluated
- Maximum stress experiences on rods: <u>2.8</u> <u>MPa</u>
- Yield Strength is <u>352 MPa</u>
- Maximum Displacement of 0.00118 in

\rightarrow Meets Design Goals

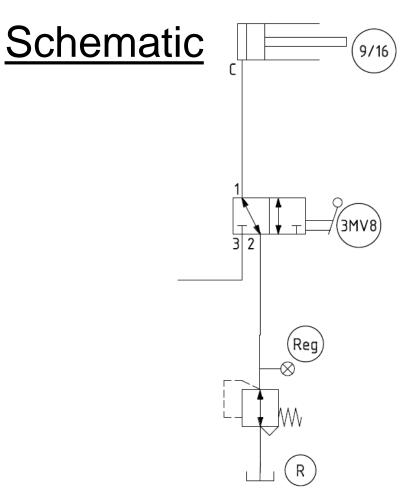

 Female 9/16-18 and 3/4-16 bungs welded to reservoir

Vehicle Construction – Issues and Solutions

- There was issues finding a shaft that was a match to our 9tooth spline and trike chain
- Our mentor was able to source a 9-tooth coupling that was than welded into a corresponding sprocket.

• Welded Sprocket

Tabs welded to frame of trike to hold reservoir.



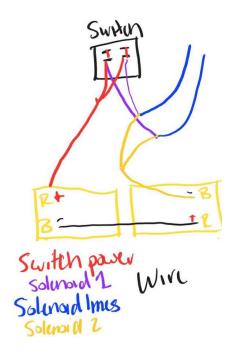
• Manifold mounting plate welded to rear of trike

Final Pneumatics Configuration

Purpose – to move holder for phone and water bottle into position when needed.

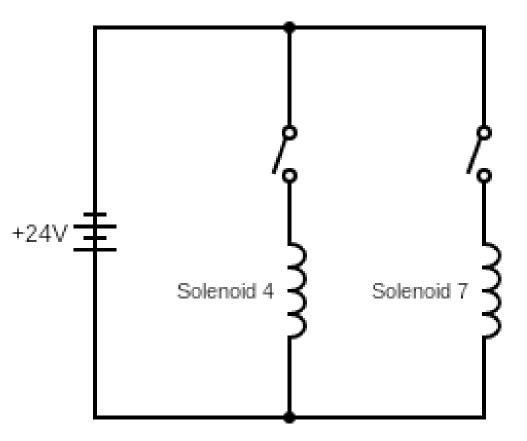
Final Pneumatics Configuration

- 1/8 in. piece of sheet metal welded to frame to directly behind the rider.
- Half gallon air tank, regulator, and toggle switch mounted onto reader rod.
- Cylinder full extended at 50 psi.



Electronic Configuration

- Two 24 V solenoids connected to two 12 V paired in series.
- Solenoids are toggled through aluminum rocker switch panel, mounted directly in front of rider.



Electronic Configuration

Schematic

Final Vehicle

Hydraulic Power Analyses

Power required to reach a constant velocity of 20 mph.

Weight (kg)	136	Force (N)	46.5
Inlinegrade	5%	Desired Speed (m/s)	8.9
Surface resistance (N)	2.9	Power required (W)	416

Vehicle Testing Modes -Truth Table

Inputs							Results				
Ball	Accumulator	Pump	#2 Bleed	#4 Mode	#6 Accum	#7 Direction	Motor	C1 (Accum)	т	Ext CV	Major/Minor Modes
Closed	N/A	No Flow	Open	N/A	Closed	Off (Fwd)	No speed (free fwd/rev)	None	No flow (Flow out/No flow)	No flow (Flow in/No flow)	Towing Mode
Closed	N/A	Flow in	Closed	On	Closed	Off (Fwd)	Fwd speed	None	Flow out	No flow	Direct Drive Fwd
Closed	N/A	Flow in	Closed	On	Closed	On (Rev)	Rev speed	None	Flow out	No flow	Direct Drive Rev
Open	N/A	Flow in	Closed	Off	Closed	Off (Fwd)	No speed (free fwd)	Flow out (No flow)	No flow (Flow out)	No flow (Flow in)	Pedal Pressurize
Open	Acc > Sys	Flow in	Closed	On	Closed	Off (Fwd)	Fwd speed	None	Flow out	No flow	Direct Drive FWD
Open	Acc > Sys	Flow in	Closed	On	Closed	On (Rev)	Rev speed	None	Flow out	No flow	Direct Drive REV
Open	Acc < Sys	Flow in	Closed	On	Closed	Off (Fwd)	Fwd torque	Flow out	Flow out	No flow	Direct Drive FWD, Acc steals flow
Open	Acc < Sys	Flow in	Closed	On	Closed	On (Rev)	Rev torque	Flow out	Flow out	No flow	Direct Drive REV, Acc steals flow
Open	Acc > Sys	No Flow	Closed	On	Open	Off (Fwd)	Fwd torque	Flow in	Flow out	No flow	Hyd Accel Fwd
Open	N/A	No Flow	Closed	On	Open	On (Rev)	Rev torque	Flow out	Flow in	Flow in	Hyd Braking Fwd (1)
Open	N/A	No Flow	Closed	On	Closed	On (Rev)	Rev torque	Flow out	Flow in	Flow in	Hyd Braking Fwd (2)
Open	Acc > Sys	No Flow	Closed	On	Open	On (Rev)	Rev torque	Flow in	Flow out	No flow	Hyd Accel Rev
Open	N/A	No Flow	Closed	On	Open	Off (Fwd)	Fwd torque	Flow out	Flow in	No flow	Hyd Braking Rev (1)
Open	N/A	No Flow	Closed	On	Closed	Off (Fwd)	Fwd torque	Flow out	Flow in	No flow	Hyd Braking Rev (2)

• Truth table developed by our mentor Richard Lyman.

Vehicle Testing

Hydraulics

• Direct Drive

- Two pressure regulators are set to 2500 and 2750 psi respectively.
- Flow control valve fully closed, allowing motor rotation
- Direct Charging and Accumulator Charging
 - The position of the manual valve decides the route of fluid
 - Closing valve results in direct charging
 - Opening valve results in accumulator drive

Vehicle Testing – cont.

Hydraulics

- Accumulator charging
 - Our motor turns CCW when the 3/2 DCV is actuated
- Turn shaft stiffness
 - Trike pedaling was initially stiff. Removing the air in the system allowed for a smoother rotation and easier shifting.

Pneumatics

• The relief value of the cylinder broke, but by incorporating a rotary value it allowed us to use a regular fitting on the cylinder.

Lessons learned

- Start the fabrication process as soon as possible
- Exhaust your resources: Mentors, Alumni, Past Vehicles
- Selectively optimize
- Flexibility

Future Improvements

- Improved ball bearings on trike
- Incorporate hard lining
- Emphasizes the ergonomics of the design with the use of manual and ball valves

Acknowledgements

- Ernie Parker
- Romeo Locke
- Dan Turner
- Jeff McCarthy
- Mary Pluta
- In addition to our Mentors and Advisors

Ν F P Δ

Final Presentation

Kennesaw State University

NFPA Education and Technology Foundation

Students: Michael Bakareke (PM) Nand Kendarius Chatman gy Nyiem Dailey On Hunter Whitworth

Advisors: Drs. Laura & Richard Ruhala April 14, 2022

KENNESAW STATE U N I V E R S I T Y