

NFPA Education and Technology Foundation Final Presentation Cal Poly Dr. Jim Widmann 04/13/2023

CAL POLY

Intro

Connor Getz

Milo Klein

Joshua Romano

Marius Tali

Yael Valdez

Manufacturing

Vehicle Construction & Final Product

Overview

New bike chassis: Frame, Seat, and Handlebars

New Hydraulic Circuit Designed and Assembled

Experimentation with gear ratio's and shifting

Frame

- All frame pieces cut, welded and drilled on campus
 - All pieces TIG welded except for pedal and front wheel tubes
 - C-clamps and welding magnets were used as primary fixturing
 - Various amperages utilized for welding differing wall thicknesses
 - Pedal and front wheel tubes MIG welded
 - Cleaned and painted after manufacturing

Handlebars

- Handlebars were also cut and welded on campus
 - Water-TIG for welding
 - Challenges of welding aluminum discussed in future slide
 - 90° vice for tube welding used for handle pieces

Seat & Steering

- Sourced a new seat with retrofitted attachment to the frame
 - Lightweight, comfortable, and easy to mount
 - Removed excess parts and drilled new holes
- Ackermann steering recycled from last team
 - Worked well previously, decided to use it again

Hydraulics

CAL POLY

- All Hydraulic components were sourced or reused; none were made in house.
- Contractors Maintenance in San Luis Obispo, cut all hydraulic lines to length and provided fittings.
- New attachment brackets were made.

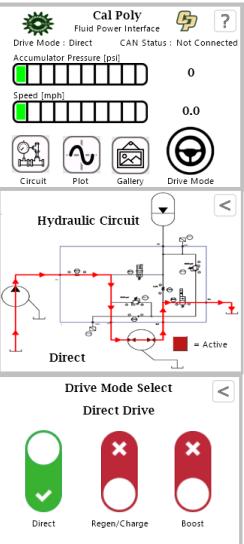
Front Power Transfer

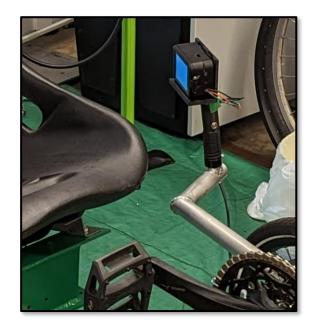
- Interchangeable sprocket attached to the pedals
- 7-speed cassette
- Custom-mounted derailleur
- Shifter connected to our pneumatic system

Rear Power Transfer


 Flip-flop hub facilitating both free and fixedwheel sprockets

Pneumatic Shifting




Electronics

Problems and Solutions

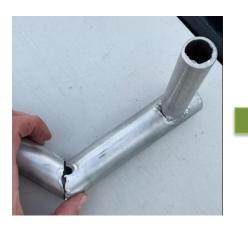
Problems encounter during manufacturing and testing and how they were addressed.

Testing

- Simulated each of the events
- Experimented with pre-charge variation
- Experienced numerous problems while testing

Front Legs Weld Yield

- Front legs yielded (V-shape)
 - Insufficient penetration when welding materials
- Needed a quick and non-invasive solution
 - Added additional beam below frame
 - Attached and bent back to shape using plates and bolts



Aluminum Welding

- TIG welding Aluminum proved to be more difficult than expected
 - Careful amperage calibration to avoid burnout
 - Thin walls
- Motor bracket required fillet welds
 - Difficult to keep oxide layer off before welding
- Solution: Asked an experienced welder on campus to weld the most difficult joints
 - Special thanks to Bryan Lutz for doing this for us

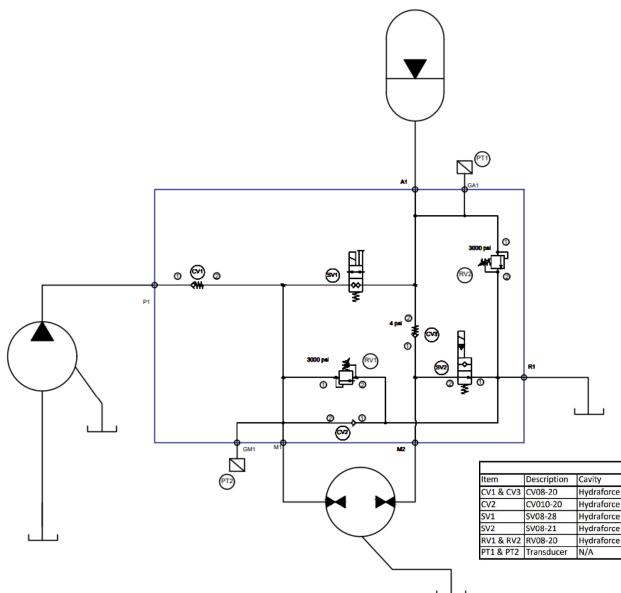
Before:

After:

Rear Wheel Spokes



Hydraulics



PROBLEM: MOTOR FAILED UNDER LOADING

SOLUTION: CYCLING MOTOR

N	FP	A	
Fluid		low	
			7
-VEHICI	-		
RAM	117	ma	
Class			

Cal Poly FPVC Valves			
Item	Description	Cavity	Note
CV1 & CV3	CV08-20	Hydraforce VC-08-20 or Equivalent	Cavity Only, Using cartridge from previous year
CV2	CV010-20	Hydraforce VC-08-20 or Equivalent	Cavity Only, Using cartridge from previous year
SV1	SV08-28	Hydraforce VC-08-20 or Equivalent	Cavity Only, Using cartridge from previous year
SV2	SV08-21	Hydraforce VC-08-20 or Equivalent	Cavity Only, Using cartridge from previous year
RV1 & RV2	RV08-20	Hydraforce VC-08-20 or Equivalent	Cavity Only, Using cartridge from previous year
PT1 & PT2	Transducer	N/A	Attaches to a SAE-6 port

Final Circuit

Pneumatic Consistency

- Replace Regulator
- Permanent
 connection from
 actuators to paddles
- Mechatronic control system

Shifting Limitations

- 7-speed system was too ambitious
 - Difficulty up-shifting
 - Chain angle
- Derailleur positioning

Problem: Gear ratios prevented uphill motion.

Solution: Implementation of new gears

Gearing Cont.

CAL POLY

Reflection

Improvements and lessons

Hydraulics

- Improvements:
 - Nitrogen Pre-charge tuning
 - Hardlines and Routing
- Lessons:
 - Assembly takes time
 - Understanding Circuit logic and how careful design contributes to operation and testing
 - The importance of careful planning

Chassis

- Identify potential hang-ups early
 - Isolate aspects of design/manufacturing processes that are unclear, then investigate as soon as possible
 - Ex: welding aluminum or manufacturing space constraints
- Don't be afraid to ask for help
 - Asking shop techs, experienced welders, and faculty for assistance can greatly improve overall quality of chassis and reduce time spent designing/manufacturing
- Rule of Pi
 - Time taken for completion = initial time estimated * π
 - Anticipate that design/manufacturing processes will take longer than initially expected

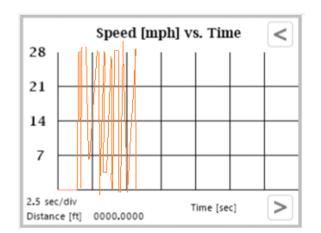
Front Power Train Improvements

- Improvements:
 - Fewer ratios
 - Better derailleur positioning
- Lessons:
 - Chain angle
 - Huge variety of bike components
 - Importance of early testing

Rear Power Train Improvements

- Improvements:
 - Bolted connection for fixed sprocket
 - Stronger wheel construction
- Lessons:
 - Early stress testing
 - Consulting industry experts

Pneumatic Improvements


- Improvements:
 - Replace Regulator
 - Permanent actuator connections
- Lessons:
 - Scope creep

Electronic Improvements

- Simultaneous pressure readings
- Local averaging on speed sensor
- Integration of Pneumatics

SUNSOURCE

CAL POLY

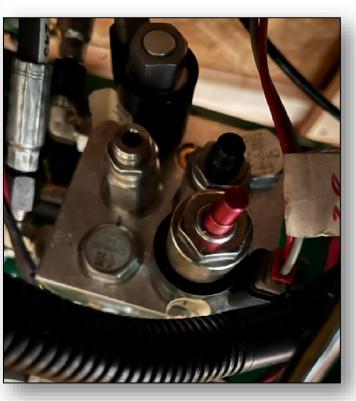
Questions?

Slide Bank Start

Gearing Analysis

Start up Torque (New Gear)

- Original Ratio (OR): .6
- New Ratio (NR): .375
- Motor pressure drop ~700psi
- OR flat: 1522psi
- NR flat: 1214psi
- OR Competition Grade: 2298psi
- NR Competition Grade: 1662psi
- Testing indicates operator can generate ~1800psi at motor inlet.


Start up Torque (Old Gear)

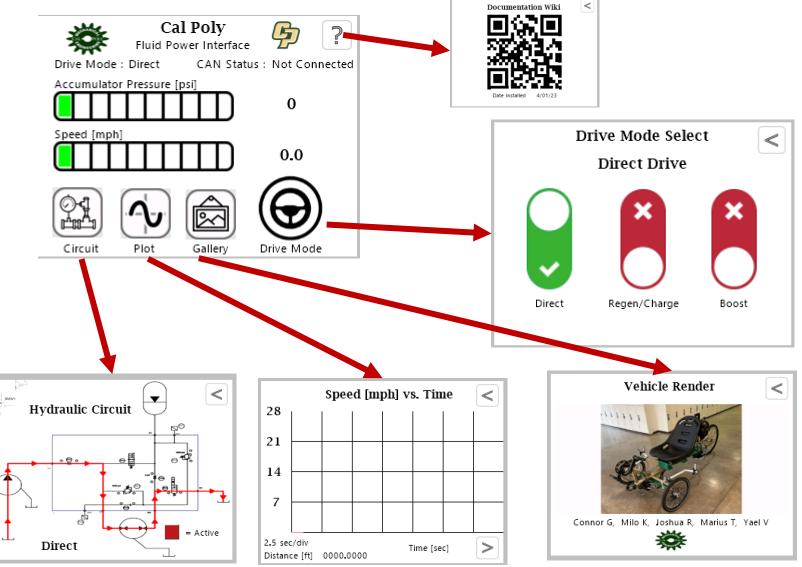
	Start up forque (New Sear)
<pre>M_vehicle = 9.31; %slug bike and rider r = 1.208; %wheel radius in ft a_start = 1; %ft/s/s target acceleration F_load = M_vehicle*a_start; %Force to move bike</pre>	<pre>M_vehicle = 9.31; %slug bike and rider r = 1.208; %wheel radius in ft a_start = 1; %ft/s/s target acceleration F_load = M_vehicle*a_start; %Force to move bike</pre>
%flat ground T_Start = N_2*F_load*r %Torque on the motor	%flat ground T_Start = N_2*F_load*r %Torque on the motor
T_Start = 6.7479	T_Start = 4.2174
<pre>P_motor = T_Start/T_psi %Pressure to turn motor in psi</pre>	<pre>P_motor = T_Start/T_psi %Pressure to turn motor in psi</pre>
P_motor = 822.9132	P_motor = 514.3207
<pre>% 1% Grade (.5729 theta) F_load2 = M_vehicle*a_start + M_vehicle*32*sind(.5729); T_Start2 = N_2*F_load2*r; %Torque on the motor P_motor2 = T_Start2/T_psi %Pressure to turn motor in psi</pre>	% 1% Grade (.5729 theta) F_load2 = M_vehicle*a_start + M_vehicle*32*sind(.5729); T_Start2 = N_2*F_load2*r; %Torque on the motor P_motor2 = T_Start2/T_psi %Pressure to turn motor in psi
P_motor2 = 1.0862e+03	P_motor2 = 678.8840
% 2.7% Grade (1.56 theta) F_load3 = M_vehicle*a_start + M_vehicle*32*sind(1.56); T_Start3 = N_2*F_load3*r %Torque on the motor	<pre>% 2.7% Grade (1.56 theta) F_load3 = M_vehicle*a_start + M_vehicle*32*sind(1.56); T_Start3 = N_2*F_load3*r %Torque on the motor</pre>
T_Start3 = 12.6264	T_Start3 = 7.8915
P_motor3 = T_Start3/T_psi %Pressure to turn motor in psi	P_motor3 = T_Start3/T_psi %Pressure to turn motor in psi
P_motor3 = 1.5398e+03	P_motor3 = 962.3768
<pre>% 4% Grade (2.3 theta) F_load4 = M_vehicle*a_start + M_vehicle*32*sind(2.3); T_Start4 = N_2*F_load4*r; %Torque on the motor P_motor4 = T_Start4/T_psi %Pressure to turn motor in psi</pre>	% 4% Grade (2.3 theta) F_load4 = M_vehicle*a_start + M_vehicle*32*sind(2.3); T_Start4 = N_2*F_load4*r; %Torque on the motor P_motor4 = T_Start4/T_psi %Pressure to turn motor in psi
P_motor4 = 1.8797e+03	P_motor4 = 1.1748e+03
%Pressure increase from 0% to 2.7% P_increase = P_motor3-P_motor	%Pressure increase from 0% to 2.7% P_increase = P_motor3-P_motor
P_increase = 716.8896	P_increase = 448.0560

Manifold Pictures

Hydraulic Attachments

Accumulator/Reservoir Column was reused

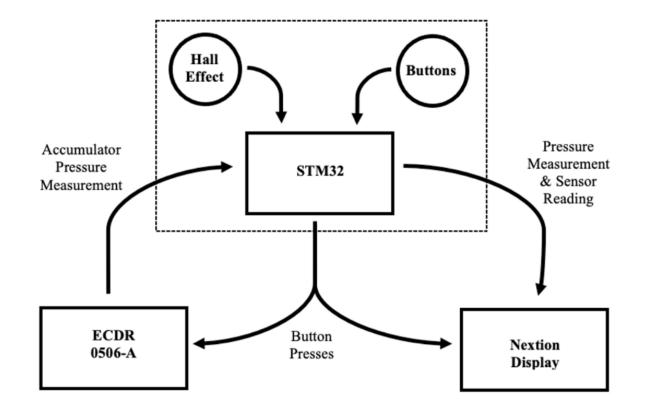
Pump bracket was reused


New Motor bracket

New Manifold mounting plate

Complete Display HMI

3 Adapters For Interfacing



Component Interfacing

